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Abstract

The dynamic characteristics of the out-of-plane vibration for an axially moving membrane are
investigated in this study. The equations of in-plane and out-of-plane motions are derived by using the
extended Hamilton principle. Two different types of boundary conditions are considered at the rollers: one
is the condition of no friction and the other is the condition of no slipping. After discretizing the equations
by the Galerkin method, the natural frequencies and mode shapes are computed. From the computation
results, it is found that the translating speed, boundary conditions and aspect ratio of the membrane have
effects on the natural frequencies, mode shapes and stability for the out-of-plane vibration of the moving
membrane.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Axially moving membranes are found in various engineering applications such as paper
manufacturing, magnetic tape recording and so on. In these applications, the out-of-plane
see front matter r 2005 Elsevier Ltd. All rights reserved.
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vibration of a membrane as well as the in-plane vibration is important in an axially moving
membrane. In some circumstances, the out-of-plane vibration is more important than the in-plane
vibration. For example, the most critical issue in paper industry is to reduce the out-of-plane
vibration, because the severe out-of-plane vibration limits operation speeds resulting in low
productivity of paper machines.

Besides moving membranes, various types of moving materials have been studied. The extensive
research for axially moving materials can be found in a review article by Wickert and Mote [1].
Examples of the studies on axially moving beams, plates and strings are as follows. The vibration
and stability of a band saw were studied with an axially moving plate model by Ulsoy and Mote
[2]. Considering nonlinearity, the free vibration of an axially moving strip was examined by
Thurman and Mote [3]. The vibration and the dynamic responses for a belt were presented by
Kim and Lee [4]. Assuming the axial velocity to be periodic, the transverse vibration of an axially
accelerating string was studied by Pakdemirli et al. [5]. The vibrations of an axially moving string
with geometric nonlinearity have been studied by Chung et al. [6].

For axially moving membranes, Neimi and Pramila [7] analyzed the transverse vibrations of an
axially moving membrane submerged in ideal fluid using the finite element method. They studied
the effects of the element mesh density, the truncation distance and various lumping techniques on
the accuracy of computation. Koivurova and Pramila [8] presented a theoretical and numerical
formulation for a nonlinear axially moving membrane. They investigated geometrically nonlinear
effects such as large displacements, variation of membrane tension and variation in axial velocity
due to deformation. Recently, Shin et al. [9] studied the free in-plane vibration of an axially
moving membrane considering the effects of both the translating speed and aspect ratio of the
membrane. They discussed the effects of the translating speed, aspect ratio, and boundary
conditions on the in-plane vibrations of the moving membrane.

In this paper, the out-of-plane vibration characteristics of the moving membranes are studied
considering two kinds of in-plane boundary conditions introduced in Ref. [9]. Under the
assumption that the in-plane motion is in a steady state and the out-of-plane motion is a dynamic
state, the equations of in-plane and out-of-plane motions are derived from the extended Hamilton
principle [10]. During the derivation, the geometric nonlinearity due to large displacements is
included. After the derived equations are discretized by the Galerkin method, the natural
frequencies and mode shapes are computed from the discretized equations. Based on numerical
computations, the effects of the translating speed, boundary conditions and aspect ratio on
dynamic characteristics are analyzed for the out-of-plane vibration of the moving membrane.
2. Equations of motion

Fig. 1 shows a schematic plot of an axially moving membrane with width b when the moving
membrane has transverse vibration called the out-of-plane vibration. The membrane is supported
by two pairs of rollers that are set apart from each other by length L. It is assumed in this paper
that the membrane is translated in the x direction with an axially translating speed V and is
subjected to a uniform tension per unit area T at the both ends.

The motion of the membrane can be determined by the displacements in the xyz coordinate
system that is a space-fixed inertial frame. When point Pðx; yÞ moves to point P0ðx0; y0Þ due to
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Fig. 1. Model of an axially moving membrane with the translating speed V :

C. Shin et al. / Journal of Sound and Vibration 286 (2005) 1019–1031 1021
deformation of the membrane, the motion of point P may be represented by the longitudinal
displacement u, the lateral displacement v and the transverse displacement w: As shown in Fig. 1,
the displacements u; v and w correspond to the displacements in the x; y and z directions,
respectively.

A main assumption of this paper while deriving the equations of motion is that the out-of-plane
motion is in a dynamic state while the in-plane motion is in a steady state. Note that the in-plane
and out-of-plane motions are described by the in-plane displacements, u and v; and the out-of-
displacement w; respectively. Since the in-plane stiffness is much higher than the out-of-plane
stiffness, this assumption is acceptable and reasonable. Examples using this kind of assumption
can be found in the papers regarding spinning disks [11–13]. Under the assumption mentioned
above, the longitudinal and lateral displacements become functions of only the spatial coordinates
x and y: Because the transverse displacement is in a dynamic state, the transverse displacement is a
function of time t as well as the coordinates x and y: Therefore, the displacements can be
represented by

u ¼ uðx; yÞ; v ¼ vðx; yÞ; w ¼ wðt;x; yÞ. (1)

The position vector of point P after deformation of the membrane may be represented by

r ¼ ðx þ uÞiþ ðy þ vÞjþ wk, (2)

where i, j and k are unit vectors in the x; y and z directions, respectively. The material derivative of
the position vector r with respect to time leads to the velocity vector of point P given by

v ¼ V 1þ
qu

qx

� �
iþ V

qv

qx
jþ

qw

qt
þ V

qw

qx

� �
k. (3)

To consider geometric nonlinearity caused by the large deformation of the membrane, the strains
should be represented as nonlinear functions of the displacements. According to the von Karman
strain theory [14], the strain–displacement relations are given by

�x ¼
qu

qx
þ

1

2

qw

qx

� �2

; �y ¼
qv

qy
þ

1

2

qw

qy

� �2

; �xy ¼
1

2

qu

qy
þ

qv

qx
þ

qw

qx

qw

qy

� �
. (4)
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On the other hand, the linearized stresses are used in this study. The linearized stresses are given
by

sx ¼
E

1� n2
qu

qx
þ n

qv

qy

� �
; sy ¼

E

1� n2
qv

qy
þ n

qu

qx

� �
; sxy ¼

E

2ð1þ nÞ
qu

qy
þ

qv

qx

� �
, (5)

where E is Young’s modulus and n is Poisson’s ratio. Although the linearized stresses are used for
modelling instead of the nonlinear stresses, the dynamic behaviour of the membrane can be well
described because the geometric nonlinearity is due to large deformation.

The equations of motion can be derived from the extended Hamilton principle after the kinetic
energy and the potential energy are obtained by using Eqs. (3)–(5). The derived equations of
motion for the free vibration of the axially moving membrane may be expressed as

rV2 q2u

qx2
�

qsx

qx
�

qsxy

qy
¼ 0, (6)

rV2 q2v

qx2
�

qsy

qy
�

qsxy

qx
¼ 0, (7)

r
q2w

qt2
þ 2V

q2w

qtqx
þ V2 q2w

qx2

� �
�

q
qx

sx

qw

qx
þ sxy

qw

qy

� �
�

q
qy

sy

qw

qy
þ sxy

qw

qx

� �
¼ 0. (8)

Since the stresses sx; sy and sxy are functions of only the in-plane displacements u and v; Eqs.
(6) and (7) are dependent on u and v but independent of time t: This means that Eqs. (6) and (7)
are equations for the steady-state equilibrium of the in-plane displacements. However, the
equation of out-of-plane motion, given by Eq (8), is an equation for a dynamic state. It is
interesting that Eqs. (6) and (7) are linear equations and these equations are coupled through only
the in-plane displacements u and v: For this reason, Eqs. (6) and (7) can be solved independently
without considering the equation of out-of-plane motion. On the other hand, Eq. (8) is a
nonlinear equation where the out-of-plane displacement w is coupled to the in-plane
displacements. Appearance of the in-plane stresses in the equation of out-of-plane motion
implies that the in-plane stresses have an influence on the out-of-plane vibration of the membrane.

Two cases of the boundary conditions, which were introduced in Ref. [9], are also considered in
this paper. The differences between these two cases are only the boundary conditions of the lateral
direction, i.e., the y direction at x ¼ 0 and L: All the boundary conditions except these ones are
the same for both cases. In Case I, there is no friction between the membrane and the rollers in the
lateral direction, while in Case II there is no slipping between them in the same direction. In other
words, at the rollers, the membrane of Case I can freely move in the y direction but the membrane
of Case II is fixed in this direction. The boundary conditions of Case I are written by

sx ¼ T ; sxy ¼ w ¼ 0 at x ¼ 0;L, (9)

sy ¼ sxy ¼ sy

qw

qy
þ sxy

qw

qx
¼ 0 at y ¼ 0; b, (10)
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while the boundary conditions of Case II are written by

sx ¼ T ; v ¼ w ¼ 0 at x ¼ 0;L, (11)

sy ¼ sxy ¼ sy
qw

qy
þ sxy

qw

qx
¼ 0 at y ¼ 0; b. (12)

3. Approximate solutions

In order to obtain approximate solutions from the equations of motion and the boundary
conditions, the Galerkin method is used in this study. The Galerkin method requires the
comparison functions as the basis functions, which should satisfy all the boundary conditions
including the essential and natural boundary conditions. However, it is very hard to find the
comparison functions to satisfy the boundary conditions given in Eqs. (9)–(12). To circumvent
this difficulty, the equations of motion and the associated boundary conditions need to be
transformed into the weak form because the weak form permits the admissible functions as the
basis functions. Since the admissible functions satisfy only the essential boundary conditions, it is
relatively easy to select the admissible functions as the basis functions compared to the
comparison functions.

Before deriving the weak form, the weighting functions need to be defined. In this study, the
weighting functions are defined as arbitrary functions to satisfy the essential boundary conditions.
The weighting functions for u; v and w are denoted by ū; v̄ and w̄; respectively. As discussed
before, since the equations of in-plane motion, Eqs. (6) and (7), have coupling between only the
in-plane displacements u and v; they can be solved regardless of the equation of out-of-plane
motion, Eq. (8). After the in-plane displacements are determined from Eqs. (6) and (7), the
stresses sx; sy and sxy can be regarded as prescribed functions of x and y: Then, Eq. (8) becomes
a linear partial differential equation with an unknown displacement w: For this reason, two
weak forms are derived in this paper: one is for the in-plane motion and the other is for the
out-of-plane.

The weak form for the in-plane motion may be obtained by multiplying Eqs. (6) and (7) by ū

and v̄; respectively, summing them, integrating the resultant equation over the area A and
applying integration by parts. The weak form for the in-plane motion may be represented byZ

A

rV2 ū
q2u

qx2
þ v̄

q2v

qx2

� �
þ sx

qū

qx
þ sy

qv̄

qy
þ sxy

qū

qy
þ

qv̄

qx

� �� �
dA

¼ T

Z b

0

ðūjx¼L � ūjx¼0Þdy. ð13Þ

In a similar way, the weak form for the out-of-plane motion can be derived. The weak form for
the out-of-plane motion can be written asZ

A

rw̄
q2w

qt2
þ 2V

q2w

qt qx
þ V2 q2w

qx2

� ��

þsx

qw̄

qx

qw

qx
þ sy

qw̄

qy

qw

qy
þ sxy

qw̄

qx

qw

qy
þ
qw̄

qy

qw

qx

� ��
dA ¼ 0, ð14Þ
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During derivation of the weak forms, the natural boundary conditions, which are related to the
stresses, have already been considered. Therefore, the admissible functions can be used as
the basis functions for the in-plane and out-of-plane displacements. It should be noted that the
derived weak forms could be applicable for both Cases I and II. Only the difference between Cases
I and II is the choice of the basis functions for the lateral displacement v:

The in-plane and out-of-plane displacements may be approximated in finite-dimensional
function spaces, in which the basis functions consist of the admissible functions. Eqs. (9)–(12)
show that u has no essential boundary condition for both Cases I and II and v has the essential
boundary conditions only for Case II. Hence, the approximate solutions for the in-plane
displacements can be written in terms of the Legendre polynomials or trigonometric functions:

u ¼
XNx

i¼0

XNy

j¼0

Tu
ijX

u
i ðxÞY jðyÞ; v ¼

XNx

i¼0

XNy

j¼0

Tv
ijX

v
i ðxÞY jðyÞ, (15)

where Nx and Ny are the total numbers of the basis functions for the in-plane displacements in the
x and y directions, respectively; Tu

ij and Tv
ij are unknown coefficients to be determined; and X u

i ðxÞ;
X v

i ðxÞ and Y jðyÞ may be given by

X u
i ðxÞ ¼

XR1

r¼0

ð�1Þr
ð2i � 2rÞ!

2ir!ði � rÞ!ði � 2rÞ!

2x

L
� 1

� �i�2r

; i ¼ 0; 1; . . . ;N, (16)

X v
i ðxÞ ¼

X u
i ðxÞ for Case I;

sin ðiþ1Þpx
L

for Case II;

(
i ¼ 0; 1; . . . ;N, (17)

Y jðyÞ ¼
XR2

r¼0

ð�1Þr
ð2j � 2rÞ!

2jr!ðj � rÞ!ðj � 2rÞ!

2y

b
� 1

� �j�2r

; j ¼ 0; 1; . . . ;N, (18)

in which

R1 ¼
i=2 if i is even;

ði � 1Þ=2 if i is odd;

(
R2 ¼

j=2 if j is even;

ðj � 1Þ=2 if j is odd;

(
(19)

Note that w has only the essential boundary conditions at x ¼ 0 and L while it has only the
natural boundary conditions at y ¼ 0 and b: Therefore, the approximate solution of w may be
expressed as

w ¼
XMx

p¼0

XMy

q¼0

Tw
pqðtÞY qðyÞ sin

ðp þ 1Þpx

L
, (20)

where Mx and My are the total number of the basis functions for the out-of-plane displacement
in the x and y directions. The weighting functions corresponding to u; v and w can be
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expressed as

ū ¼
XNx

m¼0

XNy

n¼0

T̄
u

mnX u
mðxÞY nðyÞ; v̄ ¼

XNx

m¼0

XNy

n¼0

T̄
v

mnX v
mðxÞY nðyÞ,

w̄ ¼
XMx

r¼0

XMy

s¼0

T̄
w

rsðtÞY sðyÞ sin
ðr þ 1Þpx

L
, ð21Þ

where T̄
u

mn and T̄
v

mn are arbitrary constants and T̄
w

rsðtÞ is an arbitrary function of time.
The discretized equations of motion can be obtained by substituting Eqs. (15), (20) and (21)

into Eqs. (13) and (14). Collecting all the terms of the resultant equations with respect to T̄
u

mn; T̄
v

mn

and T̄
w

rsðtÞ; the coefficients of T̄
u

mn; T̄
v

mn and T̄
w

rsðtÞ yield discretized equations, which can be written
by two matrix-vector equations. One is the equation of in-plane force equilibrium in a steady state
and the other is the equation of out-of-plane motion in a dynamic state. The discretized equations
of in-plane force equilibrium may be rewritten as

KuvTuv ¼ Fuv, (22)

where Kuv is the stiffness matrix for the in-plane motion, Fuv is the load vector, and Tuv is given by

Tuv ¼
Tu

Tv

� 	
(23)

in which

Tu ¼ fTu
00;T

u
10; . . . ;T

u
Nx0

;Tu
01;T

u
11; . . . ;T

u
Nx1

; . . . ;Tu
0Ny

;Tu
1Ny

; . . . ;Tu
NxNy

gT,

Tv ¼ fTv
00;T

v
10; . . . ;T

v
Nx0

;Tv
01;T

v
11; . . . ;T

v
Nx1

; . . . ;Tv
0Ny

;Tv
1Ny

; . . . ;Tv
NxNy

gT. ð24Þ

It should be pointed out that Eq. (22) cannot be solved without a special treatment because the
Kuv matrix has no inverse matrix. This is caused by the fact that the membrane can have a rigid-
body motion in the xy plane. To get rid of the rigid-body motion, some rows and columns, which
have only zero elements or are dependent on the other rows or columns, should be deleted from
the Kuv matrix. After the coefficients Tu

ij and Tv
ij are computed from Eq. (22), the in-plane stresses

sx; sy and sxy as well as the in-plane displacements u and v become functions of x and y: On the
other hand, the discretized equations of out-of-plane motion may be written as

Mw €T
w
þ 2VGw _T

w
þ ðV2Hw þ KwÞTw ¼ 0, (25)

where Mw is the mass matrix for the out-of-plane motion, Gw is the matrix related to the
gyroscopic force, Hw is the matrix related to the centrifugal force, Kw is the structural stiffness
matrix, and Tw is defined as

Tw ¼ fTw
00;T

w
10; . . . ;T

w
Mx0

;Tw
01;T

w
11; . . . ;T

w
Mx1

; . . . ;Tw
0My

;Tw
1My

; . . . ;Tw
MxMy

gT. (26)

To obtain the natural frequencies and mode shapes for the out-of-plane vibration of the axially
moving membrane, the eigenvalue problem should be derived from Eq. (25). The solution of Eq.
(25) can be assumed as

Tw ¼ T0e
lnt, (27)
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where T0 is the eigenvector and ln is the eigenvalue or the complex natural frequency. Note that
the natural frequency in a general sense, on; is the imaginary part of the eigenvalue ln:
Substitution of Eq. (27) into Eq (25) leads to the eigenvalue problem given by

ðl2nM
w þ 2VlnG

w
þ V2Hw þ KwÞT0 ¼ 0. (28)

The complex natural frequencies of the membrane can be computed from

detðl2nM
w þ 2VlnG

w
þ V2Hw þ KwÞ ¼ 0. (29)

For a given eigenvalue ln; Eq. (28) yields the corresponding eigenvector T0: This eigenvector is
used to determine the associated mode shape from Eq. (20).
4. Analysis and discussion

Before discussing the natural frequencies and mode shapes of the membrane, it is convenient for
simplicity of discussion to define the dimensionless eigenvalue ~l and the dimensionless velocity ~V
as follows:

~l ¼ ln
L

p

ffiffiffiffi
r
T

r
; ~V ¼ V

ffiffiffiffi
r
T

r
. (30)

The dimensionless natural frequency, denoted by ~o; can be defined by the real part of the
dimensionless eigenvalue ~l: At this point, it is necessary to define a mode (k; l) of the given
membrane. In the (k; l) mode, k and l represent the orders of mode complexities in the x and y

directions, respectively. In fact, k is the number of nodal lines (excluding the end lines at the
rollers) parallel to the rollers or the y-axis.

4.1. Effects of the translating speed on the natural frequencies

First, the effects of the translating speed on the natural frequencies are investigated. Fig. 2
shows the dimensionless eigenvalues ~l of a membrane with L ¼ b for the variation of the
dimensionless translating speed ~V when the membrane has the boundary conditions of Case I.
Fig. 2a is for the imaginary parts of ~l; i.e., ~o while Fig. 2b is for the real parts of ~l: If the modes
for the membrane of Case I have the same number of nodal lines parallel to the rollers, their
natural frequencies are identical regardless of the mode complexity in the y direction. This fact can
be identified in Fig. 2a, where the lines of the ðk; lÞ modes for a given value of k and l ¼ 1; 2; . . .
overlap. It is also found that the dimensionless natural frequency of the ðk; lÞ mode has a value of
k þ 1 when ~V ¼ 0; decreases with ~V ; and becomes zero when ~V ¼ 1: These features for the
membrane of Case I are the same as those for the axially moving string discussed in Ref. [6]. It is
well known that the speed when the natural frequency becomes zero is called the critical speed.
Thus, the critical speed for the membrane of Case I is ~V ¼ 1: As shown in Fig. 2b, the imaginary
parts of ~l is zero until ~V increases to the critical speed. Therefore, the translating membrane of
Case I is dynamically stable when the translating speed is below the critical speed.

Next, the effects of the translating speed on the natural frequencies are considered for the
membrane of Case II. For the membrane of Case II, the dimensionless eigenvalues for the
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Fig. 2. Dimensionless eigenvalues ~l for the variation of the dimensionless translating speed ~V when a membrane with

L ¼ b has boundary conditions of Case I: (a) the imaginary parts; (b) the real parts.
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Fig. 3. Dimensionless eigenvalues ~l for the variation of the dimensionless translating speed ~V when a membrane with

L ¼ b has boundary conditions of Case II: (a) the imaginary parts; (b) the real parts.
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variation of the dimensionless translating speed are shown in Fig. 3, in which Fig. 3a is for the
imaginary parts of the eigenvalues and Fig. 3b is for the real parts. Similar to the membrane of
Case I, the membrane of Case II has the decreasing natural frequencies with the translating speed
except in the neighbourhood of ~V ¼ 1: However, the different behaviours of the natural
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frequencies are observed between the membranes of Cases I and II if Figs. 2 and 3 are compared.
For a given value of k; the natural frequencies of the ðk; lÞ modes for Case II have distinct values
from each other if l is different. Therefore, the natural frequencies of the ðk; lÞ mode for a given
value of k and l ¼ 1; 2; . . . do not overlap in Fig. 3a. It should be also noted from Fig. 3b that the
real parts of the eigenvalues become positive even when ~Vo1: This means that the membrane of
Case II has dynamic instability at a lower translating speed that the membrane of Case I.
Consequently, the dynamic characteristics for the membrane of Case II may show quite different
behaviours from those for a string.

4.2. Mode shapes of the moving membrane

The mode shapes are examined for the axially moving membrane of Case I. Since there is no
friction between the membrane and the rollers in the y direction or in the direction parallel to the
rollers, it can be inferred that the membrane does not have tension in this direction. Fig. 4
illustrates the mode shapes of the axially moving membrane of Case I when the dimensionless
translating speed is ~V ¼ 0:5: The modes (0, 1), (0, 2) and (0, 3), shown in Figs. 4a–c, have no nodal
line parallel to the y-axis, while the (1, 1), (1, 2) and (1, 3), shown in Figs. 4d–f, have one nodal
line.

The mode shapes of the membrane of Case II are also examined. Fig. 5 illustrates the mode
shapes of the membrane of Case II when ~V ¼ 0:5: In the membrane of Case II, there is no slipping
between the membrane and the rollers in the y direction. Since the membrane does not slip at the
rollers, friction forces exist between the membrane and the rollers. The existence of the friction
forces implies that the membrane is subjected to tension in the y direction.

Comparing the mode shapes between Cases I and II, it is seen that the mode shapes of Case II
have less fluctuation in the y direction than those of Case I. This is caused by the fact that the
membrane of Case II has tension in the y direction but the membrane of Case I has no tension in
this direction.
Fig. 4. Mode shapes for the moving membrane of Case I when ~V ¼ 0:5 and L ¼ b: (a) the (0, 1) mode; (b) the (0, 2)

mode; (c) the (0, 3) mode; (d) the (1, 1) mode; (e) the (1, 2) mode and (f) the (1, 3) mode.



ARTICLE IN PRESS

Fig. 5. Mode shapes for the moving membrane of Case II when ~V ¼ 0:5 and L ¼ b: (a) the (0, 1) mode; (b) the (0, 2)

mode; (c) the (0, 3) mode; (d) the (1, 1) mode; (e) the (1, 2) mode and (f) the (1, 3) mode.
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4.3. Effects of the aspect ratio on the natural frequencies

The effects of the aspect ratio on the natural frequencies of the membrane are examined for
both Cases I and II. In order to observe the effects of the aspect ratio, the natural frequencies are
computed decreasing the width b with the fixed length L: Figs. 6 and 7 show the lowest natural
frequencies versus the translating speed for the membranes of Cases I and II, respectively, when
the aspect ratios L=b are 1, 2 and 3. Here, the lowest natural frequency represents the natural
frequency corresponding to the (0, 1) mode. As illustrated in Fig. 6, the lines of the natural
frequencies for L=b ¼ 1; 2 and 3 overlap regardless of the translating speed if the membrane has
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the boundaries of Case I. This means that the aspect ratio of the membrane has no influence on
the lowest natural frequency and the critical speed for the membrane of Case I. In contrast to the
membrane of Case I, the membrane of Case II has the lowest natural frequencies and critical
speed affected by the aspect ratio, as shown in Fig. 7. It is found from the figure that the critical
speed as well as the lowest natural frequency diminishes with the aspect ratio. This tendency is the
same as that of the in-plane vibration presented in Ref. [9].
5. Conclusions

The dynamic characteristics of the out-of-plane vibration for the axially moving membrane
were analyzed in this paper. The equations of in-plane and out-of-plane motions were derived by
considering two sets of boundary conditions: Cases I and II. After the equations of motion and
the associated boundary conditions were transformed to the weak forms, the Galerkin method
was applied to obtain approximate solutions.

From the analysis of the natural frequencies and mode shapes for the axially moving
membrane, the following conclusions are obtained:
(1)
 The natural frequencies and the critical speed for the membrane of Case II are lower than
those for the membrane of Case I. In other words, the membrane of Case II may become
unstable even when the dimensionless velocity is less than 1, i.e., ~Vo1; however, the
membrane of Case I is stable when ~Vo1:
(2)
 For a given mode complexity in the direction perpendicular to the rollers, the natural
frequencies for the membrane of Case I are the same irrespective of the mode complexity in the
direction parallel to the rollers; however, those for the membrane of Case II are distinct for
different mode complexities in this direction.
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(3)
 The mode shapes for the membrane of Case II have less fluctuation in the direction parallel to
the rollers than those of Case I, because the membrane of Case II has tension in this direction
while the membrane of Case I has no apparent tension.
(4)
 The aspect ratio has no influence on the natural frequencies and the critical speed for the
membrane of Case I while it has an influence on those for the membrane of Case II.
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